590 ROM-less Cordic Engine

590 : ROM-less Cordic Engine

Design render
  • Author: Rohan Sundar, Rohan Verma and Jyotinder Singh
  • Description: A ROM-less cordic engine that utilizes SPI-slave interface to receive four 16-bit inputs (atan₀, alpha, x, y) and returns three 16-bit outputs (alpha, cosθ, sinθ).
  • GitHub repository
  • Open in 3D viewer
  • Clock: 50000000 Hz

Credits

The development of this ROM-less CORDIC engine was made possible by the engineering team at Vicharak, who contributed subject matter expertise in math and RTL synthesis. Their Vaaman development platform served as an effective test harness for validating RTL designs and verifying algorithms.

Devang Kabutarwala, Kasetty Praveen Kumar, Rishik Ram Jallarapu, Deepak Sharda, Tejas Dabhankar, Akshar Vastarpara

How it works

Cordic-16 is a ROM-less CORDIC implementation with 16-bit signed fixed-point input Q3.16 (1 sign bit, 3 integer bits, and 12 fraction bits). This core comprises mainly (i) a single-stage CORDIC engine that operates in rotation mode for computing $cos$ and $sin$ of input angle $\theta$, and (ii) an $arctan$ generator that generates the micro-rotation angles dynamically in each clock cycle for the corresponding iteration.

<p align="center"> <img src="./_asset/Block_Diagram.png" alt="Block Diagarm of the ROM-less CORDIC Engine" width="800"/> </p> <p align="center"><em>Figure 1: Block Diagram of the ROM-less CORDIC Engine</em></p>

The aforementioned CORDIC core accepts the input angle $\theta$ in radian format; since $\theta \in [0, 2\pi]$, 3 bits are sufficient to accommodate the integer part of the angle and 12 bits for the fractional part to achieve accuracy. Hence, 16-bit data width is chosen, and the CORDIC engine is iterated over 13 iterations. In this implementation, the micro-rotation angles $arctan$ were generated using Taylor series approximation to avoid the memory for storing them.

Basic Functionality of CORDIC CORE

The CORDIC core computes trigonometric functions by rotating a vector iteratively by breaking down the angle of rotation into a set of small predefined angles. If a two-dimensional vector $v_0=[x_0,y_0]$ is rotated by an angle $\theta$, then it results in a vector $v_L=[x_L,y_L]$. The rotation angle $\theta$ is expressed as a series of $L$ micro-rotation angles $\alpha_i = \arctan(2^{-i})$ as shown below.

$\theta = \sum_{i=0}^{L-1}\sigma_i\alpha_i, ~i=0,1,2,\cdots L-1$

where, $\sigma_i=\pm1$ controls the direction of the micro-rotation. In each iteration, the vector is rotated with elementary angle $\alpha_i$ as follows,

$x_{i+1} = x_i-\sigma_i2^{-i}y_i$

$y_{i+1} = y_i+\sigma_i2^{-i}x_i$

$z_{i+1} = z_i-\sigma_i\alpha_i$

where $z_i$ corresponds to the rotation angle in the $i^{th}$ iteration and $z_0$ is the initial angle. In rotation mode, $\sigma_i = \text{sign}(z_i)$. The basic architecture for the implementation of the CORDIC core can be found in the references given at the end of this documentation.

Note that the CORDIC core performs rotation only in Quadrants 1 and 4 (Q1 & Q4), i.e., $\theta \in [-pi/4 , pi/4]$. If input angle lies in Q2 or Q3, then it should be mapped into either Q1 or Q4 and post-processed with the CORDIC output as follows:

Quadrant $cos(\theta)$ $sin(\theta)$
Q1 cos_output_CORDIC sin_output_CORDIC
Q2 -sin_output_CORDIC cos_output_CORDIC
Q3 -cos_output_CORDIC -sin_output_CORDIC
Q4 sin_output_CORDIC -cos_output_CORDIC

As said, micro-rotation angles were generated using Taylor's series approximation; it is found that the mean absolute error between actual and computed value is $0.003$ for $1000$ samples. This was evaluated using MATLAB; the below figure shows the approximation of the computed value over the actual results.

<p align="center"> <img src="./_asset/MATLAB_comparison_result.png" alt="Comparision of actual and computed value" width="800"/> </p> <p align="center"><em>Figure 2: Comparison of actual and computed value</em></p>

How to test

The CORDIC is interfaced using SPI, and one byte is transferred at a time. The core expects 8 bytes (64-bit input) as {in_atan_0, in_alpha, in_x, in_y}, where in each of the inputs has a data width of 16 bits. After receiving these inputs, the engine generates the output as {out_alpha, out_costheta, out_sintheta}, wherein each of them is 16 bits. Thus, we receive a total of 6 bytes from SPI.

Here

Signal name Details
in_y scaled y-coordinate of input vector (0 in case of calculation of sin calculation)
in_x scaled x-coordinate of input vector
in_alpha input angle in radian
in_atan_0 initial micro-rotation angle
out_sintheta output $cos(\theta)$ value
out_costheta output $sin(\theta)$ value
out_alpha output converged value of input angle (0 in case of sin and cos calculation)

External hardware

Externally an SPI master is required to communicate and send the input data to the CORDIC.

We have used RP2040 (Pico) for all our testing.

Reference

A lot more about cordic can be understood from this paper

IO

#InputOutputBidirectional
0ui_in[0]uo_out[0]
1ui_in[1]uo_out[1]
2ui_in[2]
3
4
5
6
7

Chip location

Controller Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux tt_um_chip_rom (Chip ROM) tt_um_factory_test (Tiny Tapeout Factory Test) tt_um_oscillating_bones (Oscillating Bones) tt_um_rebelmike_incrementer (Incrementer) tt_um_rebeccargb_tt09ball_gdsart (TT09Ball GDS Art) tt_um_tt_tinyQV (TinyQV 'Asteroids' - Crowdsourced Risc-V SoC) tt_um_DalinEM_asic_1 (ASIC) tt_um_urish_simon (Simon Says memory game) tt_um_rburt16_bias_generator (Bias Generator) tt_um_librelane3_test (Tiny Tapeout LibreLane 3 Test) tt_um_10_vga_crossyroad (Crossyroad) tt_um_rebeccargb_universal_decoder (Universal Binary to Segment Decoder) tt_um_rebeccargb_hardware_utf8 (Hardware UTF Encoder/Decoder) tt_um_rebeccargb_intercal_alu (INTERCAL ALU) tt_um_rebeccargb_dipped (Densely Packed Decimal) tt_um_rebeccargb_styler (Styler) tt_um_rebeccargb_vga_timing_experiments (VGA Timing Experiments) tt_um_rebeccargb_colorbars (Color Bars) tt_um_rebeccargb_vga_pride (VGA Pride) tt_um_cw_vref (Current-Mode Bandgap Reference) tt_um_tinytapeout_logo_screensaver (VGA Screensaver with Tiny Tapeout Logo) tt_um_rburt16_opamp_3stage (OpAmp 3stage) tt_um_gamepad_pmod_demo (Gamepad Pmod Demo) tt_um_micro_tiles_container (Micro tile container) tt_um_virantha_enigma (Enigma - 52-bit Key Length) tt_um_jamesrosssharp_1bitam (1bit_am_sdr) tt_um_jamesrosssharp_tiny1bitam (Tiny 1-bit AM Radio) tt_um_MichaelBell_rle_vga (RLE Video Player) tt_um_MichaelBell_mandelbrot (VGA Mandelbrot) tt_um_murmann_group (Decimation Filter for Incremental and Regular Delta-Sigma Modulators) tt_um_betz_morse_keyer (Morse Code Keyer) tt_um_urish_giant_ringosc (Giant Ring Oscillator (3853 inverters)) tt_um_tiny_pll (Tiny PLL) tt_um_tc503_countdown_timer (Countdown Timer) tt_um_richardgonzalez_ped_traff_light (Pedestrian Traffic Light) tt_um_analog_factory_test (TT08 Analog Factory Test) tt_um_alexandercoabad_mixedsignal (mixedsignal) tt_um_tgrillz_sixSidedDie (Six Sided Die) tt_um_mattvenn_analog_ring_osc (Ring Oscillators) tt_um_vga_clock (VGA clock) tt_um_mattvenn_r2r_dac_3v3 (Analog 8 bit 3.3v R2R DAC) tt_um_mattvenn_spi_test (SPI test) tt_um_quarren42_demoscene_top (asic design is my passion) tt_um_micro_tiles_container_group2 (Micro tile container (group 2)) tt_um_z2a_rgb_mixer (RGB Mixer demo) tt_um_frequency_counter (Frequency counter) tt_um_urish_sic1 (SIC-1 8-bit SUBLEQ Single Instruction Computer) tt_um_tobi_mckellar_top (Capacitive Touch Sensor) tt_um_log_afpm (16-bit Logarithmic Approximate Floating Point Multiplier) tt_um_uwasic_dinogame (UW ASIC - Optimized Dino) tt_um_ece298a_8_bit_cpu_top (8-Bit CPU) tt_um_tqv_peripheral_harness (Rotary Encoder Peripheral) tt_um_led_matrix_driver (SPI LED Matrix Driver) tt_um_2048_vga_game (2048 sliding tile puzzle game (VGA)) tt_um_mac (MAC) tt_um_dpmunit (DPM_Unit) tt_um_nitelich_riscyjr (RISCY Jr.) tt_um_nitelich_conway (Conway's GoL) tt_um_pwen (Pulse Width Encoder) tt_um_mcs4_cpu (MCS-4 4004 CPU) tt_um_mbist (Design of SRAM BIST) tt_um_weighted_majority (Weighted Majority Voter / Trend Detector) tt_um_brandonramos_VGA_Pong_with_NES_Controllers (VGA Pong with NES Controllers) tt_um_brandonramos_opamp_ladder (2-bit Flash ADC) tt_um_NE567Mixer28 (OTA folded cascode) tt_um_acidonitroso_programmable_threshold_voltage_sensor (Programmable threshold voltage sensor) tt_um_DAC1 (tt_um_DAC1) tt_um_trivium_stream_processor (Trivium Stream Cipher) tt_um_analog_example (Digital OTA) tt_um_sortaALUAriaMitra (Sorta 4-Bit ALU) tt_um_RoyTr16 (Connect Four VGA) tt_um_jnw_wulffern (JNW-TEMP) tt_um_serdes (Secure SERDES with Integrated FIR Filtering) tt_um_limpix31_r0 (VGA Human Reaction Meter) tt_um_torurstrom_async_lock (Asynchronous Locking Unit) tt_um_galaguna_PostSys (Post's Machine CPU Based) tt_um_edwintorok (Rounding error) tt_um_td4 (tt-td04) tt_um_snn (Reward implemented Spiking Neural Network) tt_um_matrag_chirp_top (Tiny Tapeout Chirp Modulator) tt_um_sha256_processor_dvirdc (SHA-256 Processor) tt_um_pchri03_levenshtein (Fuzzy Search Engine) tt_um_AriaMitraClock (12 Hour Clock (with AM and PM)) tt_um_swangust (posit8_add) tt_um_DelosReyesJordan_HDL (Reaction Time Test) tt_um_upalermo_simple_analog_circuit (Simple Analog Circuit) tt_um_swangust2 (posit8_mul) tt_um_thexeno_rgbw_controller (RGBW Color Processor) tt_um_top_layer (Spike Detection and Classification System) tt_um_Alida_DutyCycleMeter (Duty Cycle Meter) tt_um_dco (Digitally Controlled Oscillator) tt_um_8bitalu (8-bit Pipelined ALU) tt_um_resfuzzy (resfuzzy) tt_um_javibajocero_top (MarcoPolo) tt_um_Scimia_oscillator_tester (Oscillator tester) tt_um_ag_priority_encoder_parity_checker (Priority Encoder with Parity Checker) tt_um_tnt_mosbius (tnt's variant of SKY130 mini-MOSbius) tt_um_program_counter_top_level (Test Design 1) tt_um_subdiduntil2_mixed_signal_classifier (Mixed-signal Classifier) tt_um_dac_test3v3 (Analog 8 bit 3.3v R2R DAC) tt_um_LPCAS_TP1 ( LPCAS_TP1 ) tt_um_regfield (Register Field) tt_um_delaychain (Delay Chain) tt_um_tdctest_container (Micro tile container) tt_um_spacewar (Spacewar) tt_um_Enhanced_pll (Enhance PLL) tt_um_romless_cordic_engine (ROM-less Cordic Engine) tt_um_ev_motor_control (PLC Based Electric Vehicle Motor Control System) tt_um_plc_prg (PLC-PRG) tt_um_kishorenetheti_tt16_mips (8-bit MIPS Single Cycle Processor) tt_um_snn_core (Adaptive Leaky Integrate-and-Fire spiking neuron core for edge AI) tt_um_myprocessor (8-bit Custom Processor) tt_um_sjsu (SJSU vga demo) tt_um_vedic_4x4 (Vedic 4x4 Multiplier) tt_um_braun_mult (8x8 Braun Array Multiplier) tt_um_r2r_dac (4-bit R2R DAC) tt_um_stochastic_integrator_tt9_CL123abc (Stochastic Integrator) tt_um_uart (UART Controller with FIFO and Interrupts) tt_um_lfsr_stevej (Linear Feedback Shift Register) tt_um_FFT_engine (FFT Engine) tt_um_tpu (Tiny Tapeout Tensor Processing Unit) tt_um_tt_tinyQVb (TinyQV 'Berzerk' - Crowdsourced Risc-V SoC) tt_um_IZ_RG_22 (IZ_RG_22) tt_um_32_bit_fp_ALU_S_M (32-bit floating point ALU) tt_um_AriaMitraGames (Games (Tic Tac Toe and Rock Paper Scissors)) tt_um_sc_bipolar_qif_neuron (Stochastic Computing based QIF model neuron) tt_um_mac_spst_tiny (Low Power and Enhanced Speed Multiplier, Accumulator with SPST Adder) tt_um_kb2ghz_xalu (4-bit minicomputer ALU) tt_um_emmersonv_tiq_adc (3 Bit TIQ ADC) tt_um_simonsays (Simon Says) tt_um_BNN (8-bit Binary Neural Network) tt_um_anweiteck_2stageCMOSOpAmp (2 Stage CMOS Op Amp) tt_um_6502 (Simplified 6502 Processor) tt_um_swangust3 (posit8_div) tt_um_jonathan_thing_vga (VGA-Video-Player) tt_um_wokwi_412635532198550529 (ttsky-pettit-wokproc-trainer) tt_um_vga_hello_world (VGA HELLO WORLD) tt_um_jyblue1001_pll (Analog PLL) tt_um_BryanKuang_mac_peripheral (8-bit Multiply-Accumulate (MAC) with 2-Cycle Serial Interface) tt_um_rebeccargb_tt09ball_screensaver (TT09Ball VGA Screensaver) tt_um_openfpga22 (Open FGPA 2x2 design) tt_um_andyshor_demux (Demux) tt_um_flash_raid_controller (SPI flash raid controller) tt_um_jonnor_pdm_microphone (PDM microphone) tt_um_digital_playground (Sky130 Digital Playground) tt_um_mod6_counter (Mod-6 Counter) tt_um_BMSCE_T2 (Choreo8) tt_um_Richard28277 (4-bit ALU) tt_um_shuangyu_top (Calculator) tt_um_wokwi_441382314812372993 (Sumador/restador de 4 bits) tt_um_TensorFlowE (TensorFlowE) tt_um_wokwi_441378095886546945 (7SDSC) tt_um_wokwi_440004235377529857 (Latched 4-bits adder) tt_um_dlmiles_tqvph_i2c (TinyQV I2C Controller Device) tt_um_markgarnold_pdp8 (Serial PDP8) tt_um_wokwi_441564414591667201 (tt-parity-detector) tt_um_vga_glyph_mode (VGA Glyph Mode) tt_um_toivoh_pwl_synth (PiecewiseOrionSynth Deluxe) tt_um_minirisc (MiniRISC-FSM) tt_um_wokwi_438920793944579073 (Multiple digital design structures) tt_um_sleepwell (Sleep Well) tt_um_lcd_controller_Andres078 (LCD_controller) tt_um_SummerTT_HDL (SJSU Summer Project: Game of Life) tt_um_chrishtet_LIF (Leaky Integrate and Fire Neuron) tt_um_diff (ttsky25_EpitaXC) tt_um_htfab_split_flops (Split Flops) tt_um_alu_4bit_wrapper (4-bit ALU with Flags) tt_um_tnt_rf_test (TTSKY25A Register File Test) tt_um_mosbius (mini mosbius) tt_um_robot_controller_top_module (AR Chip) tt_um_flummer_ltc (Linear Timecode (LTC) generator) tt_um_stress_sensor (Tiny_Tapeout_2025_three_sensors) tt_um_krisjdev_manchester_baby (Manchester Baby) tt_um_mbikovitsky_audio_player (Simple audio player) tt_um_wokwi_414123795172381697 (TinySnake) tt_um_vga_example (Jabulani Ball VGA Demo ) tt_um_stochastic_addmultiply_CL123abc (Stochastic Multiplier, Adder and Self-Multiplier) tt_um_nvious_graphics (nVious Graphics) tt_um_pe_simonbju (pe) tt_um_mikael (TinyTestOut) tt_um_brent_kung (brent-kung_4) tt_um_7FM_ShadyPong (ShadyPong) tt_um_algofoogle_vga_matrix_dac (Analog VGA CSDAC experiments) tt_um_tv_b_gone (TV-B-Gone) tt_um_sjsu_vga_music (SJSU Fight Song) tt_um_fsm_haz (FSM based RISC-V Pipeline Hazard Resolver) tt_um_dma (DMA controller) tt_um_3v_inverter_SiliconeGuide (Analog Double Inverter) tt_um_rejunity_lgn_mnist (LGN hand-written digit classifier (MNIST, 16x16 pixels)) tt_um_gray_sobel (Gray scale and Sobel filter for Edge Detection) tt_um_Xgamer1999_LIF (Demonstration of Leaky integrate and Fire neuron SJSU) tt_um_dac12 (12 bit DAC) tt_um_voting_machine (Digital Voting Machine) tt_um_updown_counter (8bit_up-down_counter) tt_um_openram_top (Single Port OpenRAM Testchip) tt_um_customalu (Custom ALU) tt_um_assaify_mssf_pll (24 MHz MSSF PLL) tt_um_Maj_opamp (2-Stage OpAmp Design) tt_um_wokwi_442131619043064833 (Encoder 7 segments display) tt_um_wokwi_441835796137492481 (TESVG Binary Counter and shif register ) tt_um_combo_haz (Combinational Logic Based RISC-V Pipeline Hazard Resolver) tt_um_tx_fsm (Design and Functional Verification of Error-Correcting FIFO Buffer with SECDED and ARQ ) tt_um_will_keen_solitaire (solitaire) tt_um_rom_vga_screensaver (VGA Screensaver with embedded bitmap ROM) tt_um_13hihi31_tdc (Time to Digital Converter) tt_um_dteal_awg (Arbitrary Waveform Generator) tt_um_LIF_neuron (AFM_LIF) tt_um_rebelmike_register (Circulating register test) tt_um_MichaelBell_hs_mul (8b10b decoder and multiplier) tt_um_SNPU (random_latch) tt_um_rejunity_atari2600 (Atari 2600) tt_um_bit_serial_cpu_top (16-bit bit-serial CPU) tt_um_semaforo (semaforo) tt_um_bleeptrack_cc1 (Cross stitch Creatures #1) tt_um_bleeptrack_cc2 (Cross stitch Creatures #2) tt_um_bleeptrack_cc3 (Cross stitch Creatures #3) tt_um_bleeptrack_cc4 (Cross stitch Creatures #4) tt_um_bitty (Bitty) tt_um_spi2ws2811x16 (spi2ws2811x8) tt_um_uart_spi (UART and SPI Communication blocks with loopback) tt_um_urish_charge_pump (Dickson Charge Pump) tt_um_adc_dac_tern_alu (adc_dac_BCT_addr_ALU_STI) tt_um_sky1 (GD Sky Processor) tt_um_fifo (ASYNCHRONOUS FIFO) tt_um_TT16 (Asynchronous FIFO) tt_um_axi4lite_top (Axi4_Lite) tt_um_TT06_pwm (PWM Generator) tt_um_hack_cpu (HACK CPU) tt_um_marxkar_jtag (JTAG CONTROLLER) tt_um_cache_controller (Simple Cache Controller) tt_um_stopwatchtop (Stopwatch with 7-seg Display) tt_um_adpll (all-digital pll) tt_um_tnt_rom_test (TT09 SKY130 ROM Test) tt_um_tnt_rom_nolvt_test (TT09 SKY130 ROM Test (no LVT variant)) tt_um_wokwi_414120207283716097 (fulladder) tt_um_kianV_rv32ima_uLinux_SoC (KianV uLinux SoC) tt_um_tv_b_gone_rom (TV-B-Gone-EU) Available Available Available Available Available Available Available Available Available Available Available Available Available